Mechanically controllable nonlinear dielectrics

22Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Strain-sensitive BaxSr1−xTiO3 perovskite systems are widely used because of their superior nonlinear dielectric behaviors. In this research, new heterostructures including paraelectric Ba0.5Sr0.5TiO3 (BSTO) and ferroelectric BaTiO3 (BTO) materials were epitaxially fabricated on flexible muscovite substrate. Through simple bending, the application of mechanical force can regulate the dielectric constant of BSTO from −77 to 36% and the channel current of BTO-based ferroelectric field effect transistor by two orders. The detailed mechanism was studied through the exploration of phase transition and determination of band structure. In addition, the phase-field simulations were implemented to provide theoretical support. This research opens a new avenue for mechanically controllable components based on high-quality oxide heteroepitaxy.

Cite

CITATION STYLE

APA

Ko, D. L., Tsai, M. F., Chen, J. W., Shao, P. W., Tan, Y. Z., Wang, J. J., … Chu, Y. H. (2020). Mechanically controllable nonlinear dielectrics. Science Advances, 6(10). https://doi.org/10.1126/sciadv.aaz3180

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free