Biogenesis of c-type cytochromes requires the covalent attachment of heme to the apoprotein. In Escherichia coli, this process involves eight membrane proteins encoded by the ccmABCDEFGH operon. CcmE binds heme covalently and transfers it to apocytochromes c in the presence of other Ccm proteins. CcmC is necessary and sufficient to incorporate heme into CcmE. Here, we report that the CcmC protein directly interacts with heme. We further show that CcmC coimmunoprecipitates with CcmE. CcmC contains two conserved histidines and a signature sequence, the so-called tryptophan-rich motif, which is the only element common to cytochrome c maturation proteins of bacteria, archae, plant mitochondria, and chloroplasts. We report that mutational changes of these motifs affecting the function of CcmC in cytochrome c maturation do not influence heme binding of CcmC. However, the mutants are defective in the CcmC-CcmE interaction, suggesting that these motifs are involved in the formation of a CcmC-CcmE complex. We propose that CcmC, CcmE, and heme interact directly with each other, establishing a periplasmic heme delivery pathway for cytochrome c maturation.
CITATION STYLE
Ren, Q., & Thöny-Meyer, L. (2001). Physical Interaction of CcmC with Heme and the Heme Chaperone CcmE during Cytochrome c Maturation. Journal of Biological Chemistry, 276(35), 32591–32596. https://doi.org/10.1074/jbc.M103058200
Mendeley helps you to discover research relevant for your work.