The purpose of this study was to identify and characterize new crystalline bulking agents applicable to freeze-dried pharmaceuticals. Thermal analysis of heat-melt sugar and sugar alcohol solids as well as their frozen aqueous solutions showed high crystallization propensity of meso-erythritol and D-mannitol. Experimental freeze-drying of the aqueous meso-erythritol solutions after their cooling by two different methods (shelf-ramp cooling and immersion of vials into liquid nitrogen) resulted in cylindrical crystalline solids that varied in appearance and microscopic structure. Powder X-ray diffraction and thermal analysis indicated different crystallization processes of meso-erythritol depending on the extent of cooling. Cooling of the frozen meso-erythritol solutions at temperatures lower than their Tg' (glass transition temperature of maximally freeze-concentrated phase, -59.7°C) induced a greater number of nuclei in the highly concentrated solute phase. Growth of multiple meso-erythritol anhydride crystals at around -40°C explains the powder-like fine surface texture of the solids dried after their immersion in liquid nitrogen. Contrarily, shelf-ramp cooling of the frozen solution down to -40°C induced an extensive growth of the solute crystal from a small number of nuclei, leading to scale-like patterns in the dried solids. An early transition of the freezing step into primary drying induced collapse of the non-crystalline region in the cakes. Appropriate process control should enable the use of meso-erythritol as an alternative crystalline bulking agent in freeze-dried formulations.
CITATION STYLE
Fujii, K., Izutsu, K. I., Kume, M., Yoshino, T., Yoshihashi, Y., Sugano, K., & Terada, K. (2015). Physical characterization of meso-erythritol as a crystalline bulking agent for freeze-dried formulations. Chemical and Pharmaceutical Bulletin, 63(5), 311–317. https://doi.org/10.1248/cpb.c14-00692
Mendeley helps you to discover research relevant for your work.