Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining

128Citations
Citations of this article
146Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Microhomology-mediated end joining (MMEJ) joins DNA ends via short stretches [5-20 nucleotides (nt)] of direct repeat sequences, yielding deletions of intervening sequences. Non-homologous end joining (NHEJ) and single-strand annealing (SSA) are other error prone processes that anneal single-stranded DNA (ssDNA) via a few bases (<5 nt) or extensive direct repeat homologies (>20 nt). Although the genetic components involved in MMEJ are largely unknown, those in NHEJ and SSA are characterized in some detail. Here, we surveyed the role of NHEJ or SSA factors in joining of double-strand breaks (DSBs) with no complementary DNA ends that rely primarily on MMEJ repair. We found that MMEJ requires the nuclease activity of Mre11/Rad50/Xrs2, 3′ flap removal by Rad1/Rad10, Nej1, and DNA synthesis by multiple polymerases including Pol4, Rad30, Rev3, and Pol32. The mismatch repair proteins, Rad52 group genes, and Rad27 are dispensable for MMEJ. Sae2 and Tel1 promote MMEJ but inhibit NHEJ, likely by regulating Mre11-dependent ssDNA accumulation at DNA break. Our data support the role of Sae2 and Tel1 in MMEJ and genome integrity. Copyright © 2007 by the Genetics Society of America.

Cite

CITATION STYLE

APA

Lee, K., & Sang, E. L. (2007). Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining. Genetics, 176(4), 2003–2014. https://doi.org/10.1534/genetics.107.076539

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free