Hybrid materials precursor to natural bentonite in the decontamination of Alizarin Yellow from aqueous solutions

1Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

The present study aims to investigate the insights of Alizarin Yellow removal by hybrid materials precursor to natural bentonite. The hybrid materials employed are bentonite modified with hexadecyltrimethylammonium bromide (HDTMA) (BnH) and aluminium pillared HDTMA bentonite (BnAH). Surface morphology of materials are obtained with scanning electron microscopy-Energy dispersive X-ray analysis (SEM-EDX). The batch reactor operations conducted in the removal of Alizarin Yellow by these solids for various parametric studies which enabled to deduce the mechanism involved at solid/solution interface. Sorption capacity and selectivity was increased significantly using hybrid materials in the removal of AY. Hybrid materials showed very high removal capacity of AY and apparently unaffected at varied pH (4.0−10.0) and sorptive concentrations 1.0 to 25.0 mgL-1. Kinetic studies indicated that an apparent equilibrium occurred within 5–10 min of contact and the kinetic data was better fitted to the pseudo-second-order kinetic model. The percent removal of AY was not affected by increasing the background electrolyte (NaCl) concentration to 0.1 molL-1 and in presence of several co-existing ions. It is revealed that the hybrid materials are found more organophilic and AY molecule bound with strong forces at the surface of hybrid materials.

Cite

CITATION STYLE

APA

Malsawmdawngzela, R., Sarikokba, Thanhmingliana, Tiwari, D., & Lee, S. M. (2022). Hybrid materials precursor to natural bentonite in the decontamination of Alizarin Yellow from aqueous solutions. Environmental Engineering Research, 27(6). https://doi.org/10.4491/eer.2021.104

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free