MultiSenseBadminton: Wearable Sensor–Based Biomechanical Dataset for Evaluation of Badminton Performance

9Citations
Citations of this article
58Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The sports industry is witnessing an increasing trend of utilizing multiple synchronized sensors for player data collection, enabling personalized training systems with multi-perspective real-time feedback. Badminton could benefit from these various sensors, but there is a scarcity of comprehensive badminton action datasets for analysis and training feedback. Addressing this gap, this paper introduces a multi-sensor badminton dataset for forehand clear and backhand drive strokes, based on interviews with coaches for optimal usability. The dataset covers various skill levels, including beginners, intermediates, and experts, providing resources for understanding biomechanics across skill levels. It encompasses 7,763 badminton swing data from 25 players, featuring sensor data on eye tracking, body tracking, muscle signals, and foot pressure. The dataset also includes video recordings, detailed annotations on stroke type, skill level, sound, ball landing, and hitting location, as well as survey and interview data. We validated our dataset by applying a proof-of-concept machine learning model to all annotation data, demonstrating its comprehensive applicability in advanced badminton training and research.

Cite

CITATION STYLE

APA

Seong, M., Kim, G., Yeo, D., Kang, Y., Yang, H., DelPreto, J., … Kim, S. J. (2024). MultiSenseBadminton: Wearable Sensor–Based Biomechanical Dataset for Evaluation of Badminton Performance. Scientific Data, 11(1). https://doi.org/10.1038/s41597-024-03144-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free