Treatment of PC12 cells with nerve growth factor (NGF) stimulates extracellular signal-regulated kinases (ERKs), as well as stress-activated c-Jun N-terminal kinases (JNKs) and p38 kinase, and induces neuronal differentiation. While the pivotal role of ERKs in NGF-induced morphological differentiation is well established, the contribution of JNK- and p38-pathways is less clear. The role of the JNK- and p38-pathway in PC12 cells was analysed by using anisomycin, a protein synthesis inhibitor that activates JNKs and p38. Non-toxic concentrations of anisomycin were found to stimulate these enzyme activities as well as the expression of the early response genes c-jun, c-fos and zif268, and to inhibit NGF-induced neurite formation. These effects of anisomycin appear to be mediated by the generation of reactive oxygen species (ROS), which in turn act through both TrkA/Ras-dependent and -independent signalling pathways. In addition, cross-talk between the p38- and ERK-pathways appears to play a role in the action of anisomycin.
CITATION STYLE
Törocsik, B., & Szeberényi, J. (2000). Anisomycin uses multiple mechanisms to stimulate mitogen-activated protein kinases and gene expression and to inhibit neuronal differentiation in PC12 phaeochromocytoma cells. European Journal of Neuroscience, 12(2), 527–532. https://doi.org/10.1046/j.1460-9568.2000.00933.x
Mendeley helps you to discover research relevant for your work.