The modification of biomass waste, as a multifunctional composite, has received tremendous attention for resource utilization and recycling. In this study, tea waste, which is a high level generator of biomass waste, was loaded with nano-Fe3O4 particles to prepare a magnetic tea waste/Fe3O4 (TW/Fe3O4) composite through a facile chemical co-precipitation approach. BET, SEM, TEM, XRD, magnetic properties, FTIR, XPS were used to characterize the TW/Fe3O4 composite. A superparamagnetic TW/Fe3O4 composite (Fe3O4: about 20 nm) was successfully synthesized and possessed the advantages of tea waste and nano-Fe3O4 particles. A chromium(vi) adsorption experiment showed that this material has a strong adsorption capacity for aqueous chromium ions, which reached 75.76 mg g−1 based on the Langmuir model. The adsorption process could be well fitted by a pseudo-second-order kinetic model and Langmuir, Temkin and Dubinin-Radushkevich (D-R) isotherm models, and was spontaneous and endothermic according to the thermodynamic analysis. The TW/Fe3O4 composite revealed good reusability and the removal rate was more than 70% after five recycling cycles. The mechanism of Cr(vi) removal involved electrostatic attraction, reduction process, ion exchange, surface complexation, etc. 70% of Cr(vi) was reduced to Cr(iii) in this investigation. This study indicated that a TW/Fe3O4 composite could be an attractive option for heavy metal treatment.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Fan, S., Wang, Y., Li, Y., Tang, J., Wang, Z., Tang, J., … Hu, K. (2017). Facile synthesis of tea waste/Fe3O4 nanoparticle composite for hexavalent chromium removal from aqueous solution. RSC Advances, 7(13), 7576–7590. https://doi.org/10.1039/c6ra27781k