The microtubule-associated protein AtMAP65-1 from Arabidopsis thaliana dimerizes and forms 25 nm cross-bridges between microtubules, but the exact mechanism is unknown. Here, we used the predicted three-dimensional structure of AtMAP65-1 as a basis for analyzing the actual cross-bridging in detail. Fold-recognition predicts that AtMAP65-1 contains four coiled-coil domains and a flexible extended loop. The length of these coiled-coil domains is about 25 nm, suggesting that one molecule could span the gap, hence forming an antiparallel overlapping dimer instead of an end-to-end dimer. We then tested this model by using truncations of AtMAP65-1. EDC {[3-(dimethylamino) propyl] carbodiimide} cross-linking analysis indicated that the N-terminus of the rod domain of AtMAP65-1 (amino acids 1-339) binds to the C-terminus of the rod domain (amino acids 340-494) and also participates in connecting the two antiparallel proteins in the cross-bridge. Nevertheless, microtubules can still form bundles in the presence of AtMAP65-1 340-587 (amino acids 340-587) or AtMAP65-1 1-494 (amino acids 1-494). Comparing the cold stability of microtubule bundles induced by full-length AtMAP65-1 with that of AtMAP65-1 340-587 or AtMAP65-1 1-494, we conclude that AtMAP65-1 495-587 acts as a flexible extended loop, playing a crucial role in binding to and stabilizing microtubules in the AtMAP65-1 cross-bridge. © The Author 2007. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Li, H., Mao, T., Zhang, Z., & Yuan, M. (2007). The AtMAP65-1 Cross-Bridge between Microtubules is Formed by One Dimer. Plant and Cell Physiology, 48(6), 866–874. https://doi.org/10.1093/pcp/pcm059