Background: Paroxysmal supraventricular tachycardia (PSVT) is a common arrhythmia associated with palpitation and a decline in quality of life. However, it is undetectable with sinus-rhythmic ECGs when patients are not in the symptomatic onset stage. Methods: In the current study, a convolution neural network (CNN) was trained with normal-sinus-rhythm standard 12-lead electrocardiographs (ECGs) of negative control patients and PSVT patients to identify patients with unrecognized PSVT. PSVT refers to atrioventricular nodal reentry tachycardia or atrioventricular reentry tachycardia based on a concealed accessory pathway as confirmed by electrophysiological procedure. Negative control group data were obtained from 5107 patients with at least one normal sinus-rhythmic ECG without any palpitation symptoms. All ECGs were randomly allocated to the training, validation and testing datasets in a 7:1:2 ratio. Model performance was evaluated on the testing dataset through F1 score, overall accuracy, area under the curve, sensitivity, specificity and precision. Results: We retrospectively enrolled 407 sinus-rhythm ECGs of PSVT procedural patients and 1794 ECGs of control patients. A total of 2201 ECGs were randomly divided into training (n = 1541), validation (n = 220) and testing (n = 440) datasets. In the testing dataset, the CNN algorithm showed an overall accuracy of 95.5%, sensitivity of 90.2%, specificity of 96.6% and precision of 86.0%. Conclusion: Our study reveals that a well-trained CNN algorithm may be a rapid, effective, inexpensive and reliable method to contribute to the detection of PSVT.
CITATION STYLE
Wang, L., Dang, S., Chen, S., Sun, J. Y., Wang, R. X., & Pan, F. (2022). Deep-Learning-Based Detection of Paroxysmal Supraventricular Tachycardia Using Sinus-Rhythm Electrocardiograms. Journal of Clinical Medicine, 11(15). https://doi.org/10.3390/jcm11154578
Mendeley helps you to discover research relevant for your work.