3D Printing Temperature Tailors Electrical and Electrochemical Properties through Changing Inner Distribution of Graphite/Polymer

29Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The rise of 3D printing technology, with fused deposition modeling as one of the simplest and most widely used techniques, has empowered an increasing interest for composite filaments, providing additional functionality to 3D-printed components. For future applications, like electrochemical energy storage, energy conversion, and sensing, the tuning of the electrochemical properties of the filament and its characterization is of eminent importance to improve the performance of 3D-printed devices. In this work, customized conductive graphite/poly(lactic acid) filament with a percentage of graphite filler close to the conductivity percolation limit is fabricated and 3D-printed into electrochemical devices. Detailed scanning electrochemical microscopy investigations demonstrate that 3D-printing temperature has a dramatic effect on the conductivity and electrochemical performance due to a changed conducive filler/polymer distribution. This may allow, e.g., 3D printing of active/inactive parts of the same structure from the same filament when changing the 3D printing nozzle temperature. These tailored properties can have profound influence on the application of these 3D-printed composites, which can lead to a dramatically different functionality of the final electrical, electrochemical, and energy storage device.

Cite

CITATION STYLE

APA

Iffelsberger, C., Jellett, C. W., & Pumera, M. (2021). 3D Printing Temperature Tailors Electrical and Electrochemical Properties through Changing Inner Distribution of Graphite/Polymer. Small, 17(24). https://doi.org/10.1002/smll.202101233

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free