Polymerized ionic liquids (PILs) are interesting new materials in sustainable technologies for energy storage and for gas sensor devices, and they provide high ion conductivity as solid polymer electrolytes in batteries. We introduce here the effect of polar protic (aqueous) and polar aprotic (propylene carbonate, PC) electrolytes, with the same concentration of lithium bis(trifluoromethane) sulfonimide (LiTFSI) on hydrophobic PIL films. Cyclic voltammetry, scanning ionic conductance microscopy and square wave voltammetry were performed, revealing that the PIL films had better electroactivity in the aqueous electrolyte and three times higher ion conductivity was obtained from electrochemical impedance spectroscopy measurements. Their energy storage capability was investigated with chronopotentiometric measurements, and it revealed 1.6 times higher specific capacitance in the aqueous electrolyte as well as novel sensor properties regarding the applied solvents. The PIL films were characterized with scanning electron microscopy, energy dispersive X-ray, FTIR and solid state nuclear magnetic resonance spectroscopy.
CITATION STYLE
Kesküla, A., Peikolainen, A. L., Kilmartin, P. A., & Kiefer, R. (2021). Solvent effect in imidazole-based poly(Ionic liquid) membranes: Energy storage and sensing. Polymers, 13(20). https://doi.org/10.3390/polym13203466
Mendeley helps you to discover research relevant for your work.