Exploiting code redundancies in ECOC

2Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We study an approach for speeding up the training of error-correcting output codes (ECOC) classifiers. The key idea is to avoid unnecessary computations by exploiting the overlap of the different training sets in the ECOC ensemble. Instead of re-training each classifier from scratch, classifiers that have been trained for one task can be adapted to related tasks in the ensemble. The crucial issue is the identification of a schedule for training the classifiers which maximizes the exploitation of the overlap. For solving this problem, we construct a classifier graph in which the nodes correspond to the classifiers, and the edges represent the training complexity for moving from one classifier to the next in terms of the number of added training examples. The solution of the Steiner Tree problem is an arborescence in this graph which describes the learning scheme with the minimal total training complexity. We experimentally evaluate the algorithm with Hoeffding trees, as an example for incremental learners where the classifier adaptation is trivial, and with SVMs, where we employ an adaptation strategy based on adapted caching and weight reuse, which guarantees that the learned model is the same as per batch learning. © 2010 Springer-Verlag.

Cite

CITATION STYLE

APA

Park, S. H., Weizsäcker, L., & Fürnkranz, J. (2010). Exploiting code redundancies in ECOC. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 6332 LNAI, pp. 266–280). https://doi.org/10.1007/978-3-642-16184-1_19

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free