An online approach for mining collective behaviors from molecular dynamics simulations

5Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Collective behavior involving distally separate regions in a protein is known to widely affect its function. In this paper, we present an online approach to study and characterize collective behavior in proteins as molecular dynamics simulations progress. Our representation of MD simulations as a stream of continuously evolving data allows us to succinctly capture spatial and temporal dependencies that may exist and analyze them efficiently using data mining techniques. By using multi-way analysis we identify (a) parts of the protein that are dynamically coupled, (b) constrained residues/ hinge sites thatmay potentially affect protein function and (c) time-points during the simulation where significant deviation in collective behavior occurred.We demonstrate the applicability of this method on two different protein simulations for barnase and cyclophilin A. For both these proteins we were able to identify constrained/ flexible regions, showing good agreement with experimental results and prior computational work. Similarly, for the two simulations, we were able to identify time windows where there were significant structural deviations. Of these time-windows, for both proteins, over 70% show collective displacements in two or more functionally relevant regions. Taken together, our results indicate that multi-way analysis techniques can be used to analyze protein dynamics and may be an attractive means to automatically track and monitor molecular dynamics simulations. © Springer-Verlag Berlin Heidelberg 2009.

Cite

CITATION STYLE

APA

Ramanathan, A., Agarwal, P. K., Kurnikova, M., & Langmead, C. J. (2009). An online approach for mining collective behaviors from molecular dynamics simulations. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 5541 LNBI, pp. 138–154). https://doi.org/10.1007/978-3-642-02008-7_10

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free