Structural variation (SV) plays a fundamental role in genome evolution and can underlie inherited or acquired diseases such as cancer. Long-read sequencing technologies have led to improvements in the characterization of structural variants (SVs), although paired-end sequencing offers better scalability. Here, we present dysgu, which calls SVs or indels using paired-end or long reads. Dysgu detects signals from alignment gaps, discordant and supplementary mappings, and generates consensus contigs, before classifying events using machine learning. Additional SVs are identified by remapping of anomalous sequences. Dysgu outperforms existing state-of-the-art tools using paired-end or long-reads, offering high sensitivity and precision whilst being among the fastest tools to run. We find that combining low coverage paired-end and long-reads is competitive in terms of performance with long-reads at higher coverage values.
CITATION STYLE
Cleal, K., & Baird, D. M. (2022). Dysgu: efficient structural variant calling using short or long reads. Nucleic Acids Research, 50(9), E53. https://doi.org/10.1093/nar/gkac039
Mendeley helps you to discover research relevant for your work.