Optimal treatment of full-thickness skin injuries requires dermal and epidermal replacement. To spare donor dermis, dermal substitutes can be used ahead of split-thickness skin graft (STSG) application. However, this two-stage procedure requires an additional general anaesthetic, often prolongs hospitalisation, and increases outpatient services. Although a few case series have described successful single-stage reconstructions, with application of both STSG and dermal substitute at the index operation, we have little understanding of how the physical characteristics of dermal substitutes affects the success of a single-stage procedure. Here, we evaluated several dermal substitutes to optimise single-stage skin replacement in a preclinical porcine model. A porcine full-thickness excisional wound model was used to evaluate the following dermal substitutes: autologous dermal graft (ADG; thicknesses 0.15-0.60 mm), Integra (0.4-0.8 mm), Alloderm (0.9-1.6 mm), and chitosan-based hydrogel (0.1-0.2 mm). After excision, each wound was treated with either a dermal substitute followed by STSG or STSG alone (control). Endpoints included graft take at postoperative days (PODs) 7 and 14, wound closure at POD 28, and wound contracture from POD 28-120. Graft take was highest in the STSG alone and hydrogel groups at POD 14 (86.9% ± 19.5% and 81.3% ± 12.3%, respectively; P
CITATION STYLE
Kemp Bohan, P. M., Cooper, L. E., Fletcher, J. L., Corkins, C. J., Natesan, S., Aden, J. K., … Chan, R. K. (2022). Impact of dermal matrix thickness on split-thickness skin graft survival and wound contraction in a single-stage procedure. International Wound Journal, 19(2), 370–379. https://doi.org/10.1111/iwj.13637
Mendeley helps you to discover research relevant for your work.