Adsorption kinetics for CO2 capture using cerium oxide impregnated on activated carbon

15Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

Abstract

Various metal oxides of CeO2, ZnO, and Co3O4 impregnated on activated carbon (AC) were synthesized to determine the CO2 capture efficiency and analyse with adsorption kinetics model. Batch kinetic studies showed that CeO2/AC is the most efficient adsorbent with an equilibrium time of 10 minutes that was needed to obtain adsorption capacity of 52.68 mg/g. CO2 adsorption at 30 °C exhibits the optimum temperature with only 6.53% loss in adsorption capacity after 5 cycles of CO2 adsorption-desorption. The CeO2 on AC was detected through X-ray diffraction and the scanning electron microscope image shows well-distributed CeO2 particles on AC surfaces. CO2 adsorption at 30 °C is best fitted with the pseudo-second-order kinetics with R2 = 0.9994 and the relative error between calculated and experimental adsorption capacity only 1.32%. The adsorption considering chemisorption is responsible for improving adsorption capacity. The addition of CeO2 on AC enhanced the adsorption capacity by providing active sites to attract CO2

Cite

CITATION STYLE

APA

Lahuri, A. H., Nguang Khai, M. L., Rahim, A. A., & Nordin, N. (2020). Adsorption kinetics for CO2 capture using cerium oxide impregnated on activated carbon. Acta Chimica Slovenica, 67(2), 570–580. https://doi.org/10.17344/ACSI.2019.5572

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free