According to Deloitte, the global aerospace industry in 2018 experienced a solid year with the demand of passengers and the strengthening of global military spending that continues to increase. Furthermore, it is expected to continue its growth trajectory in 2019 and the following years, led by the growing production of commercial aircraft and strong defense spending. The growth of aircraft production requires the designs to be supported by the knowledge and experience of qualified personnel. In the case of aerodynamic performance, it is evaluated according to the speed range considering incompressible or compressible flow for subsonic and supersonic speeds, respectively. Based on a revision of Bloom´s taxonomy this article proposes a route to learning supersonic aerodynamics for engineering students, considering and discussing the basic literature and technology used in this area of knowledge. The present work is divided into seven parts, beginning with the introduction which includes the main Fundamental concepts of the supersonic systems. The second part deals with Supersonic Aerodynamics Theory, relevant in this learning route; subsequently, the third and fourth part display a brief description of the Experimental supersonic aerodynamics and Computational Fluid Dynamics - CFD is made. Finally, is approached the Bloom´s taxonomy and a revision and is proposed a route to learn supersonic aerodynamics designed for engineering students.
CITATION STYLE
RODRIGUEZ, F., ORDUY, J. E., & ESPINDOLA, J. E. (2020). A route to learning supersonic aerodynamics in atmospheric flights for engineering students based on a revision of Bloom’s taxonomy. Espacios, 41(48), 60–79. https://doi.org/10.48082/espacios-a20v41n48p05
Mendeley helps you to discover research relevant for your work.