HGL: A hybrid global-local load balancing routing scheme for the internet of things through satellite networks

36Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Satellite networks provide complete connectivity and worldwide data transmission capability for constructing the Internet of Things. However, because of the varying Internet of Things traffic density, satellite networks may endure imbalanced traffic requirements and frequent link congestion. To effectively resolve these problems and optimally transmit Internet of Things data, a novel hybrid global-local load balancing routing scheme for Low Earth Orbit satellite networks is proposed in this article. Hybrid global-local load balancing routing scheme enables satellites to route Internet of Things traffic through global planning and local real-time adjustments in two steps. In hybrid global-local load balancing routing scheme, given the predictive nature of Internet of Things traffic distribution and Low Earth Orbit satellite networks, the inter-satellite traffic demand is decomposed into a predictable long-range baseline and unpredictable shortrange fluctuations. A global strategy is employed first for preliminary global traffic allocation based on long-range baselines, and a local strategy is then employed for route adjustments based on short-range fluctuations. With the combination of global planning and local real-time adjustments, network traffic can eventually obtain a near-optimal allocation. Numerical simulations indicate that in contrast to single-strategy schemes, hybrid global-local load balancing routing scheme can more thoroughly eliminate congestion, and it performs better in measures such as packet loss rate, average queuing delay, traffic distribution, route oscillation, and communication overhead.

Cite

CITATION STYLE

APA

Liu, Z., Li, J., Wang, Y., Li, X., & Chen, S. (2017). HGL: A hybrid global-local load balancing routing scheme for the internet of things through satellite networks. International Journal of Distributed Sensor Networks, 13(3). https://doi.org/10.1177/1550147717692586

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free