The output power capacity of solar panels depends on the intensity of light radiation it receives, while the life time depends on the high and low temperatures experienced. The purpose of this study was to examine the effect of light intensity on the output power and efficiency of solar panels. This study applies a direct measurement method using a monocrystalline type solar panel and a polycrystalline type with the same power capacity with a peak capacity of 50 Wp. The research was conducted indoors using lights as light sources by varying the light intensity in the range 2.21-331.01 W/m2 with a distance of 50 cm from the light source from the solar panel. The increase in temperature on the surface of the solar panel can also reduce the power capacity generated, and the monocrystalline type is more resistant to temperature increases than polycrystalline. The efficiency of the solar panel changes when given light with a certain energy, up to the highest intensity of 331.01 W/ m2, with the highest temperature that occurs resulting in an efficiency of 12.84% on the Monocrystalline Panel and 11.95% on the Polycrystalline Panel.
CITATION STYLE
Sugianto, S. (2020). Comparative Analysis of Solar Cell Efficiency between Monocrystalline and Polycrystalline. INTEK: Jurnal Penelitian, 7(2), 92–100. https://doi.org/10.31963/intek.v7i2.2625
Mendeley helps you to discover research relevant for your work.