Fit-for-purpose land administration (FFPLA) seeks to simplify cadastral mapping via lowering the costs and time associated with conventional surveying methods. This approach can be applied to both the initial establishment and on-going maintenance of the system. In Ethiopia, cadastral maintenance remains an on-going challenge, especially in rapidly urbanizing peri-urban areas, where farmers’ land rights and tenure security are often jeopardized. Automatic Feature Extraction (AFE) is an emerging FFPLA approach, proposed as an alternative for mapping and updating cadastral boundaries. This study explores the role of the AFE approach for updating cadastral boundaries in the vibrant peri-urban areas of Addis Ababa. Open-source software solutions were utilized to assess the (semi-) automatic extraction of cadastral boundaries from orthophotos (segmentation), designation of “boundary” and “non-boundary” outlines (classification), and delimitation of cadastral boundaries (interactive delineation). Both qualitative and quantitative assessments of the achieved results (validation) were undertaken. A high-resolution orthophoto of the study area and a reference cadastral boundary shape file were used, respectively, for extracting the parcel boundaries and validating the interactive delineation results. Qualitative (visual) assessment verified the completed extraction of newly constructed cadastral boundaries in the study area, although non-boundary outlines such as footpaths and artifacts were also retrieved. For the buffer overlay analysis, the interactively delineated boundary lines and the reference cadastre were buffered within the spatial accuracy limits for urban and rural cadastres. As a result, the quantitative assessment delivered 52% correctness and 32% completeness for a buffer width of 0.4 m and 0.6 m, respectively, for the interactively delineated and reference boundaries. The study proposed publicly available software solutions and outlined a workflow to (semi-) automatically extract cadastral boundaries from aerial/satellite images. It further demonstrated the potentially significant role AFE could play in delivering fast, affordable, and reliable cadastral mapping. Further investigation, based on user input and expertise evaluation, could help to improve the approach and apply it to a real-world setting.
CITATION STYLE
Metaferia, M. T., Bennett, R. M., Alemie, B. K., & Koeva, M. (2023). Furthering Automatic Feature Extraction for Fit-for-Purpose Cadastral Updating: Cases from Peri-Urban Addis Ababa, Ethiopia. Remote Sensing, 15(17). https://doi.org/10.3390/rs15174155
Mendeley helps you to discover research relevant for your work.