Global impacts of invasive species on the tipping points of shallow lakes

22Citations
Citations of this article
82Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

There is growing acknowledgement that human-induced change can push ecosystems beyond tipping points, resulting in the dramatic and sudden loss of vital ecosystem services. Invasive non-native species (INNS) are spreading rapidly due to anthropogenic activities and climate change and can drive changes to ecosystem functioning by altering abiotic conditions and restructuring native communities. Shallow lake ecosystems are especially vulnerable to perturbation from INNS as they can exist in two alternative stable states: either clear water with an abundance of vegetation or turbid, unvegetated and dominated by phytoplankton. Through a global meta-analysis of studies observing the effects of INNS on recipient lake ecosystems, we found that certain INNS drive significant changes in the abundance of key taxa and conditions that govern the balance of alternative equilibria in shallow lakes. Invasive fish and crustaceans demonstrated effects likely to lead to early ecosystem collapse to a turbid state and delay ecosystem recovery. Invasive molluscs presented opposite effects, which may delay ecosystem collapse and encourage ecosystem recovery. Our results demonstrate that INNS could significantly alter the tipping points of ecosystem collapse and recovery, and that not all invasive species may initiate system collapse. Our results provide guidance for managers of invaded shallow lake ecosystems, which provide diverse services including sanitation, potable water supply, industrial cooling, aquaculture and recreational resources. Moreover, our approach could be applied to identify key potential drivers of change in other crucial ecosystems which demonstrate alternative equilibria, such as coral reefs and kelp forests.

Cite

CITATION STYLE

APA

Reynolds, S. A., & Aldridge, D. C. (2021). Global impacts of invasive species on the tipping points of shallow lakes. Global Change Biology, 27(23), 6129–6138. https://doi.org/10.1111/gcb.15893

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free