How to talk about protein-level false discovery rates in shotgun proteomics

39Citations
Citations of this article
137Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A frequently sought output from a shotgun proteomics experiment is a list of proteins that we believe to have been present in the analyzed sample before proteolytic digestion. The standard technique to control for errors in such lists is to enforce a preset threshold for the false discovery rate (FDR). Many consider protein-level FDRs a difficult and vague concept, as the measurement entities, spectra, are manifestations of peptides and not proteins. Here, we argue that this confusion is unnecessary and provide a framework on how to think about protein-level FDRs, starting from its basic principle: the null hypothesis. Specifically, we point out that two competing null hypotheses are used concurrently in today's protein inference methods, which has gone unnoticed by many. Using simulations of a shotgun proteomics experiment, we show how confusing one null hypothesis for the other can lead to serious discrepancies in the FDR. Furthermore, we demonstrate how the same simulations can be used to verify FDR estimates of protein inference methods. In particular, we show that, for a simple protein inference method, decoy models can be used to accurately estimate protein-level FDRs for both competing null hypotheses.

Cite

CITATION STYLE

APA

The, M., Tasnim, A., & Käll, L. (2016). How to talk about protein-level false discovery rates in shotgun proteomics. Proteomics, 16(18), 2461–2469. https://doi.org/10.1002/pmic.201500431

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free