This paper focuses on the surface modification of the Ti-6Al-4V alloy substrate via a-C:H:SiOx coating deposition. Research results concern the a-C:H:SiOx coating structure, investigated using transmission electron microscopy and in vitro endothelization to study the coating. Based on the analysis of the atomic radial distribution function, a model is proposed for the atomic short-range order structure of the a-C:H:SiOx coating, and chemical bonds (C–O, C–C, Si–C, Si–O, and Si–Si) are identified. It is shown that the a-C:H:SiOx coating does not possess prolonged cytotoxicity in relation to EA.hy926 endothelial cells. In vitro investigations showed that the adhesion, cell number, and nitric oxide production by EA.hy926 endothelial cells on the a-C:H:SiOx-coated Ti-6Al-4V substrate are significantly lower than those on the uncoated surface. The findings suggest that the a-C:H:SiOx coating can reduce the risk of endothelial cell hyperproliferation on implants and medical devices, including mechanical prosthetic heart valves, endovascular stents, and mechanical circulatory support devices.
CITATION STYLE
Khlusov, I. A., Grenadyorov, A. S., Solovyev, A. A., Semenov, V. A., Zhulkov, M. O., Sirota, D. A., … Semin, V. O. (2023). Endothelial Cell Behavior and Nitric Oxide Production on a-C:H:SiOx-Coated Ti-6Al-4V Substrate. International Journal of Molecular Sciences, 24(7). https://doi.org/10.3390/ijms24076675
Mendeley helps you to discover research relevant for your work.