Gene and Phenotype Expansion of Unexplained Early Infantile Epileptic Encephalopathy

10Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Objective: The genetic aetiology of epileptic encephalopathy (EE) is growing rapidly based on next generation sequencing (NGS) results. In this single-centre study, we aimed to investigate a cohort of Chinese children with early infantile epileptic encephalopathy (EIEE). Methods: NGS was performed on 50 children with unexplained EIEE. The clinical profiles of children with pathogenic variants were characterised and analysed in detail. Conservation analysis and homology modelling were performed to predict the impact of STXBP1 variant on the protein structure. Results: Pathogenic variants were identified in 17 (34%) of 50 children. Sixteen variants including STXBP1 (n = 2), CDKL5 (n = 2), PAFAH1B1, SCN1A (n = 9), SCN2A, and KCNQ2 were de novo, and one (PIGN) was a compound heterozygous variant. The phenotypes of the identified genes were broadened. PIGN phenotypic spectrum may include EIEE. The STXBP1 variants were predicted to affect protein stability. Significance: NGS is a useful diagnostic tool for EIEE and contributes to expanding the EIEE-associated genotypes. Early diagnosis may lead to precise therapeutic interventions and can improve the developmental outcome.

Cite

CITATION STYLE

APA

Liu, X., Shen, Q., Zheng, G., Guo, H., Lu, X., Wang, X., … Chen, J. (2021). Gene and Phenotype Expansion of Unexplained Early Infantile Epileptic Encephalopathy. Frontiers in Neurology, 12. https://doi.org/10.3389/fneur.2021.633637

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free