Collision Avoidance Route Planning for Autonomous Medical Devices Using Multiple Depth Cameras

4Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Radiography is one of the most widely used imaging techniques in the world. Since its inception, it has continued to evolve, leading to the development of intelligent and automated radiography systems that are able to perceive parts of their environment and respond accordingly. However, such systems do not provide a complete view of the examination space and are therefore unable to detect multiple objects and fully ensure the safety of patients, staff and equipment during the execution of the movement. In this paper, we present a system architecture based on ROS (Robot Operating System) to solve these challenges and integrate an autonomous X-ray device. The architecture retrieves point clouds from range sensors placed at specific locations in the examination room. By integrating different subsystems, the architecture merges the data from the different sensors to map the space. It also implements downsampling and clustering methods to identify objects and later distinguish obstacles. A subsystem generates bounding boxes based on the detected obstacles and feeds them to a motion planning framework (MoveIt!) to enable collision avoidance during motion execution. At the same time, a subsystem implements a deep neural network model (PointNet) to classify the detected obstacles. Finally, the developed system architecture provided promising results after being deployed in a Gazebo simulated examination space and on a use case test platform.

Cite

CITATION STYLE

APA

Mahmeen, M., Sanchez, R. D. D., Friebe, M., Pech, M., & Haider, S. (2022). Collision Avoidance Route Planning for Autonomous Medical Devices Using Multiple Depth Cameras. IEEE Access, 10, 29903–29915. https://doi.org/10.1109/ACCESS.2022.3159239

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free