Fluidic operation of a polymer-based nanosensor chip for analysing single molecules

0Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

Most medical diagnostic tests are expensive, involve slow turnaround times from centralized laboratories and require highly specialized equipment with seasoned technicians to carry out the assay. To facilitate realization of precision medicine at the point of care, we have developed a mixed-scale nanosensor chip featuring high surface area pillar arrays where solid-phase reactions can be performed to detect and identify nucleic acid targets found in diseased patients. Products formed can be identified and detected using a polymer nanofluidic channel. To guide delivery of this platform, we discuss the operation of various components of the device and simulations (COMSOL) used to guide the design by investigating parameters such as pillar array loading, and hydrodynamic and electrokinetic flows. The fabrication of the nanosensor is discussed, which was performed using a silicon (Si) master patterned with a combination of focused ion beam milling and photolithography with deep reactive ion etching. The mixed-scale patterns were transferred into a thermoplastic via thermal nanoimprint lithography, which facilitated fabrication of the nanosensor chip making it appropriate for in vitro diagnostics. The results from COMSOL were experimentally verified for hydrodynamic flow using Rhodamine B as a fluorescent tracer and electrokinetic flow using single fluorescently labelled oligonucleotides (single-stranded DNAs, ssDNAs).

Cite

CITATION STYLE

APA

Vaidyanathan, S., Gamage, S., Dathathreya, K., Kryk, R., Manoharan, A., Zhao, Z., … Soper, S. A. (2022). Fluidic operation of a polymer-based nanosensor chip for analysing single molecules. Flow, 2. https://doi.org/10.1017/flo.2022.8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free