We improve both upper and lower bounds for the distributionfree testing of monotone conjunctions. Given oracle access to an unknown Boolean function f: {0,1}n → {0,1} and sampling oracle access to an unknown distribution V over {0,1}", we present an Ō(n1/3/ϵ5)-query algorithm that tests whether f is a monotone conjunction versus E-far from any monotone conjunction with respect to D. This improves the previous best upper bound of Ō(n1/2/ϵ) by Dolev and Ron [DR11], when 1/ϵ is small compared to n. For some constant ϵo > 0, we also prove a lower bound of Ω(nM1/3) for the query complexity, improving the previous best lower bound of Ω(nM1/5) by Glasner and Servedio [GS09]. Our upper and lower bounds are tight, up to a polylogarithmic factor, when the distance parameter e is a constant. Furthermore, the same upper and lower bounds can be extended to the distribution-free testing of general conjunctions, and the lower bound can be extended to that of decision lists and linear threshold functions.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Chen, X., & Xie, J. (2016). Tight bounds for the distribution-free testing of monotone conjunctions. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (Vol. 1, pp. 54–71). Association for Computing Machinery. https://doi.org/10.1137/1.9781611974331.ch5