For the first time, pyranine (8-hydroxypyrene-1,3,6-trisulfonate, HPTS) is studied for realizing active plasmonic control, which is attracted considerable attention owing to its unique photophysical and photochemical properties. We have used this photoacid (HPTS) as an active surrounding medium that can be optically controlled and used for modulating plasmon resonances. In this paper, the fabrication of 2D-plasmonic grating coated by thin film of HPTS exposed to UV irradiation is reported. By switching the UV light on and off, the HPTS thin film maintains an excited-state proton transfer (ESPT) process followed by green fluorescence resulting in a plasmonic redshift caused by the variation of the refractive index. Furthermore, this photochemical active medium has also played another important role in plasmonic sensing, in which the emission-based response of HPTS thin film in 2D-plasmonic grating to water vapor upon photoexcitation is demonstrated, for both s and p polarizations. This tunable, flexible and reversible light-driven system will enhance the development of active plasmonic structures and will have a great influence on many fields such as, biochemical optical sensors and all-optical plasmonic circuits.
CITATION STYLE
Mbarak, H., Ghahrizjani, R. T., Hamidi, S. M., Mohajerani, E., & Zaatar, Y. (2020). Reversible and tunable photochemical switch based on plasmonic structure. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-62058-z
Mendeley helps you to discover research relevant for your work.