How Far Will Clinical Application of AI Applications Advance for Colorectal Cancer Diagnosis?

  • Mori Y
  • Kudo S
  • Misawa M
  • et al.
N/ACitations
Citations of this article
42Readers
Mendeley users who have this article in their library.

Abstract

Integrating artificial intelligence (AI) applications into colonoscopy practice is being accelerated as deep learning technologies emerge. In this field, most of the preceding research has focused on polyp detection and characterization, which can mitigate inherent human errors accompanying colonoscopy procedures. On the other hand, more challenging research areas are currently capturing attention: the automated prediction of invasive cancers. Colorectal cancers (CRCs) harbor potential lymph node metastasis when they invade deeply into submucosal layers, which should be resected surgically rather than endoscopically. However, pretreatment discrimination of deeply invasive submucosal CRCs is considered difficult, according to previous prospective studies (e.g., <70% sensitivity), leading to an increased number of unnecessary surgeries for large adenomas or slightly invasive submucosal CRCs. AI is now expected to overcome this challenging hurdle because it is considered to provide better performance in predicting invasive cancer than non-expert endoscopists. In this review, we introduce five relevant publications in this area. Unfortunately, progress in this research area is in a very preliminary phase, compared to that of automated polyp detection and characterization , because of the lack of number of invasive CRCs used for machine learning. However, this issue will be overcome with more target images and cases. The research field of AI for invasive CRCs is just starting but could be a game changer of patient care in the near future, given rapidly growing technologies, and research will gradually increase.

Cite

CITATION STYLE

APA

Mori, Y., Kudo, S., Misawa, M., Takeda, K., Kudo, T., Itoh, H., … Mori, K. (2020). How Far Will Clinical Application of AI Applications Advance for Colorectal Cancer Diagnosis? Journal of the Anus, Rectum and Colon, 4(2), 47–50. https://doi.org/10.23922/jarc.2019-045

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free