In the present study a eukaryotic expression vector of varicella zoster virus (VZV) glycoprotein E (gE) was constructed and enabled to express in COS7 cells. Furthermore, a specific immune response against the VZV gE eukaryotic expression plasmid was induced in BALB/c mice. The VZV gE gene was amplified using polymerase chain reaction (PCR) and cloned into a eukaryotic expression vector, pcDNA3.1. The recombinant vector was subsequently transfected into COS7 cells using a liposome transfection reagent. The recombinant protein was instantaneously expressed by the transfected cells, as detected by immunohistochemistry, and the recombinant pcDNA-VZV gE plasmid was subsequently used to immunize mice. Tissue expression levels were analyzed by reverse transcription-PCR. In addition, the levels of serum antibodies and spleen lymphocyte proliferation activity were investigated. The amplified target gene included the full-length gE gene (~2.7 kb), and the recombinant expression vector induced gE expression in COS7 cells. In addition, the expression plasmid induced sustained expression in vivo following immunization of mice. Furthermore, the plasmid was capable of inducing specific antibody production and effectively stimulating T cell proliferation. Effective humoral and cellular immunity was triggered in the mice immunized with the VZV gE eukaryotic expression vector. The results of the present study laid the foundation for future research into a VZV DNA vaccine.
CITATION STYLE
Bao, L., Wei, G., Gan, H., Ren, X., Ma, R., Wang, Y., & Lv, H. (2016). Immunogenicity of varicella zoster virus glycoprotein E DNA vaccine. Experimental and Therapeutic Medicine, 11(5), 1788–1794. https://doi.org/10.3892/etm.2016.3086
Mendeley helps you to discover research relevant for your work.