A new group-training procedure for habituation demonstrates that presynaptic glutamate release contributes to long-term memory in Caenorhabditis elegans

46Citations
Citations of this article
59Readers
Mendeley users who have this article in their library.

Abstract

In the experiments reported here we have developed a new group-training protocol for assessing long-term memory for habituation in Caenorhabditis elegans. We have replicated all of the major findings of the original single-worm protocol using the new protocol: (1) distributed training produced long-term retention of training, massed training did not; (2) distributed training at long interstimulus intervals (ISIs) produced long-term retention, short ISIs did not; and (3) long-term memory for distributed training is protein synthesis-dependent as it could be blocked by heat shock during the inter-block interval. In addition, we have shown that long-term memory for habituation is graded, depending on the number of blocks of stimuli in training. The inter-block interval must be >40 min for long-term retention of training to occur. Finally, we have tested long-term memory for habituation training in a strain of worms with a mutation in a vesicular glutamate transporter in the sensory neurons that transduce tap (eat-4). The results from these eat-4 worms indicate that glutamate release from the sensory neurons has an important role in the formation of long-term memory for habituation.

Cite

CITATION STYLE

APA

Rose, J. K., Kaun, K. R., & Rankin, C. H. (2002). A new group-training procedure for habituation demonstrates that presynaptic glutamate release contributes to long-term memory in Caenorhabditis elegans. Learning and Memory, 9(3), 130–137. https://doi.org/10.1101/lm.46802

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free