A gene expression-based single sample predictor of lung adenocarcinoma molecular subtype and prognosis

11Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Disease recurrence in surgically treated lung adenocarcinoma (AC) remains high. New approaches for risk stratification beyond tumor stage are needed. Gene expression-based AC subtypes such as the Cancer Genome Atlas Network (TCGA) terminal-respiratory unit (TRU), proximal-inflammatory (PI) and proximal-proliferative (PP) subtypes have been associated with prognosis, but show methodological limitations for robust clinical use. We aimed to derive a platform independent single sample predictor (SSP) for molecular subtype assignment and risk stratification that could function in a clinical setting. Two-class (TRU/nonTRU=SSP2) and three-class (TRU/PP/PI=SSP3) SSPs using the AIMS algorithm were trained in 1655 ACs (n = 9659 genes) from public repositories vs TCGA centroid subtypes. Validation and survival analysis were performed in 977 patients using overall survival (OS) and distant metastasis-free survival (DMFS) as endpoints. In the validation cohort, SSP2 and SSP3 showed accuracies of 0.85 and 0.81, respectively. SSPs captured relevant biology previously associated with the TCGA subtypes and were associated with prognosis. In survival analysis, OS and DMFS for cases discordantly classified between TCGA and SSP2 favored the SSP2 classification. In resected Stage I patients, SSP2 identified TRU-cases with better OS (hazard ratio [HR] = 0.30; 95% confidence interval [CI] = 0.18-0.49) and DMFS (TRU HR = 0.52; 95% CI = 0.33-0.83) independent of age, Stage IA/IB and gender. SSP2 was transformed into a NanoString nCounter assay and tested in 44 Stage I patients using RNA from formalin-fixed tissue, providing prognostic stratification (relapse-free interval, HR = 3.2; 95% CI = 1.2-8.8). In conclusion, gene expression-based SSPs can provide molecular subtype and independent prognostic information in early-stage lung ACs. SSPs may overcome critical limitations in the applicability of gene signatures in lung cancer.

Cite

CITATION STYLE

APA

Liljedahl, H., Karlsson, A., Oskarsdottir, G. N., Salomonsson, A., Brunnström, H., Erlingsdottir, G., … Staaf, J. (2021). A gene expression-based single sample predictor of lung adenocarcinoma molecular subtype and prognosis. International Journal of Cancer, 148(1), 238–251. https://doi.org/10.1002/ijc.33242

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free