This study presents results from an Airborne Laser Scanning (ALS) mapping survey of snow depth on the mountain plateau Hardangervidda, Norway, in 2008 and 2009 at the approximate time of maximum snow accumulation during the winter. The spatial extent of the survey area is >240km2. Large variability is found for snow depth at a local scale (2 m2), and similar spatial patterns in accumulation are found between 2008 and 2009. The local snow-depth measurements were aggregated by averaging to produce new datasets at 10, 50, 100, 250 and 500 m2 and 1 km2 resolution. The measured values at 1 km2 were compared with simulated snow depth from the seNorge snow model (www.senorge.no), which is run on a 1 km2 grid resolution. Results show that the spatial variability decreases as the scale increases. At a scale of about 500 m2 to 1 km2 the variability of snow depth is somewhat larger than that modeled by seNorge. This analysis shows that (1) the regional-scale spatial pattern of snow distribution is well captured by the seNorge model and (2) relatively large differences in snow depth between the measured and modeled values are present.
CITATION STYLE
Melvold, K., & Skaugen, T. (2013). Multiscale spatial variability of lidar-derived and modeled snow depth on Hardangervidda, Norway. Annals of Glaciology, 54(62), 273–281. https://doi.org/10.3189/2013AoG62A161
Mendeley helps you to discover research relevant for your work.