New approach for severe marine weather study using satellite passive microwave sensing

67Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A methodology, based on model simulations and neural networks inversion, is proposed to jointly retrieve sea surface wind speed, sea surface temperature, atmospheric water vapor content, cloud liquid water content, and total atmospheric absorption at 10.65 GHz using Advanced Microwave Scanning Radiometer 2 measurements. In particular, estimation of the total atmospheric absorption at 10.65 GHz, which can be done with high accuracy due to the not so strong influence of liquid water and especially water vapor, helps to refine a new filter to considerably reduce masking ocean areas for severe weather systems, characterized by high wind speeds and moderate atmospheric absorption, appropriate for studying winter extratropical cyclone and polar low systems. A polar low case study has demonstrated significant improvement in the coverage of the ocean area available for geophysical retrievals: Only less than 1% of high wind speed pixels were masked comparatively to the 40-70% masking given by other methods. Key Points Algorithm for atmospheric absorption retrieval from AMSR2 data is developed Threshold value on atmospheric absorption can be used for severe weather masking New weather masking can significantly improve ocean retrieval coverage ©2013. American Geophysical Union. All Rights Reserved.

Cite

CITATION STYLE

APA

Zabolotskikh, E. V., Mitnik, L. M., & Chapron, B. (2013). New approach for severe marine weather study using satellite passive microwave sensing. Geophysical Research Letters, 40(13), 3347–3350. https://doi.org/10.1002/grl.50664

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free