The topological properties of periodically driven many-body systems often have no static analogs and defy a simple description based on the effective Hamiltonian. To explore the emergent edge modes in driven p-wave superconductors in two dimensions, we analysed a toy model of Kitaev chains (one-dimensional spinless p-wave superconductors with Majorana edge states) coupled by time-periodic hopping. We showed that with proper driving, the coupled Kitaev chains can turn into a fully gapped superconductor, which is analogous to the px+ipy state but has two, rather than one, chiral edge modes. A different driving protocol turns it into a gapless superconductor with isolated point nodes and completely flat edge states at quasienergy ω=0 or π/T, with T as the driving period. The time evolution operator U(kx, ky, t) of the toy model is computed exactly to yield the phase bands. And the "topological singularities" of the phase bands are exhausted and compared to those of a periodically driven Hofstadter model, which features counter-propagating chiral edge modes. These examples demonstrate the unique edge states in driven superconducting systems and suggest driving as a potentially fruitful route to engineer new topological superconductors.
CITATION STYLE
Zhao, E. (2016). Anatomy of a periodically driven p-wave superconductor. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 71(10), 883–895. https://doi.org/10.1515/zna-2016-0074
Mendeley helps you to discover research relevant for your work.