The risk of meiotic segregation errors increases dramatically during a woman’s thirties, a phenomenon known as the maternal age effect. In addition, several lines of evidence indicate that meiotic cohesion deteriorates as oocytes age. One mechanism that may contribute to age-induced loss of cohesion is oxidative damage. In support of this model, we recently reported (Perkins et al. in Proc Natl Acad Sci U S A 113(44):E6823–E6830, 2016) that the knockdown of the reactive oxygen species (ROS)–scavenging enzyme, superoxide dismutase (SOD), during meiotic prophase causes premature loss of arm cohesion and segregation errors in Drosophila oocytes. If age-dependent oxidative damage causes meiotic segregation errors, then the expression of extra SOD1 (cytosolic/nuclear) or SOD2 (mitochondrial) in oocytes may attenuate this effect. To test this hypothesis, we generated flies that contain a UAS-controlled EMPTY, SOD1, or SOD2 cassette and induced expression using a Gal4 driver that turns on during meiotic prophase. We then compared the fidelity of chromosome segregation in aged and non-aged Drosophila oocytes for all three genotypes. As expected, p{EMPTY} oocytes subjected to aging exhibited a significant increase in nondisjunction (NDJ) compared with non-aged oocytes. In contrast, the magnitude of age-dependent NDJ was significantly reduced when expression of extra SOD1 or SOD2 was induced during prophase. Our findings support the hypothesis that a major factor underlying the maternal age effect in humans is age-induced oxidative damage that results in premature loss of meiotic cohesion. Moreover, our work raises the exciting possibility that antioxidant supplementation may provide a preventative strategy to reduce the risk of meiotic segregation errors in older women.
CITATION STYLE
Perkins, A. T., Greig, M. M., Sontakke, A. A., Peloquin, A. S., McPeek, M. A., & Bickel, S. E. (2019). Increased levels of superoxide dismutase suppress meiotic segregation errors in aging oocytes. Chromosoma, 128(3), 215–222. https://doi.org/10.1007/s00412-019-00702-y
Mendeley helps you to discover research relevant for your work.