Accidental falls are some of the most common sources of injury among the elderly. A fall is particularly critical when the elderly person is injured and cannot call for help. This problem is addressed by many fall-detection systems, but they often focus on isolated falls under restricted conditions, not paying enough attention to complex, real-life situations. To achieve robust performance in real life, a combination of body-worn inertial and location sensors for fall detection is studied in this paper. A novel context-based method that exploits the information from the both types of sensors is designed. It considers body accelerations, location and elementary activities to detect a fall. The recognition of the activities is of great importance and also is the most demanding of the three, thus it is treated as a separate task. The evaluation is performed on a real-life scenario, including fast falls, slow falls and fall-like situations that are difficult to distinguish from falls. All possible combinations of six inertial and four location sensors are tested. The results show that: (i) context-based reasoning significantly improves the performance; (ii) a combination of two types of sensors in a single physical sensor enclosure is the best practical solution.
CITATION STYLE
Gjoreski, H., Gams, M., & Luštrek, M. (2014). Context-based fall detection and activity recognition using inertial and location sensors. Journal of Ambient Intelligence and Smart Environments, 6(4), 419–433. https://doi.org/10.3233/AIS-140268
Mendeley helps you to discover research relevant for your work.