Regulation of Intracellular Copper by Induction of Endogenous Metallothioneins Improves the Disease Course in a Mouse Model of Amyotrophic Lateral Sclerosis

22Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS), an incurable motor neuron disease. The pathogenesis of the disease is poorly understood, but intracellular copper dyshomeostasis has been implicated as a key process in the disease. We recently observed that metallothioneins (MTs) are an excellent target for the modification of copper dyshomeostasis in a mouse model of ALS (SOD1G93A). Here, we offer a therapeutic strategy designed to increase the level of endogenous MTs. The upregulation of endogenous MTs by dexamethasone, a synthetic glucocorticoid, significantly improved the disease course and rescued motor neurons in SOD1G93A mice, even if the induction was initiated when peak body weight had decreased by 10 %. Neuroprotection was associated with the normalization of copper dyshomeostasis, as well as with decreased levels of SOD1G93A aggregates. Importantly, these benefits were clearly mediated in a MT-dependent manner, as dexamethasone did not provide any protection when endogenous MTs were abolished from SOD1G93A mice. In conclusion, the upregulation of endogenous MTs represents a promising strategy for the treatment of ALS linked to mutant SOD1.

Cite

CITATION STYLE

APA

Tokuda, E., Watanabe, S., Okawa, E., & Ono, S. ichi. (2015). Regulation of Intracellular Copper by Induction of Endogenous Metallothioneins Improves the Disease Course in a Mouse Model of Amyotrophic Lateral Sclerosis. Neurotherapeutics, 12(2), 461–476. https://doi.org/10.1007/s13311-015-0346-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free