The conduction mechanism in conducting polymers is reviewed and experimental results of temperature dependence of electrical conductivity of PF6 doped polypyrrole in temperature range of 77 to 300 K are discussed. The room-temperature conductivitywas experimentally determined to be 73 ± 3.4 S/m and temperature dependence follows the Mott’s variable range hopping model. The average hopping distance at 298 K was (6.75 ± 0.97) ×10-8 cm. The coefficient of decay of the localized states, the density states at the Fermi level, and the hopping activation energy were calculated to be (3.5±0.51) ×107 cm-1, (1.92 ± 0.83) ×1022 cm-3 eV-1, and 0.040 ± 0.001 eV respectively. KEYWORDS: Electrically Conducting Polymers; Doped Polypyrrole; Temperature Dependence of Conductivity; Hopping Activation Energy; Density of State at Fermi level
CITATION STYLE
Gochnauer, D., & Gilani, T. (2018). Conduction Mechanism in Electrically Conducting Polymers. American Journal of Undergraduate Research, 14(4). https://doi.org/10.33697/ajur.2018.006
Mendeley helps you to discover research relevant for your work.