This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Abstract Accumulating evidence has suggested the potential clinical utility of novel body fluid biomarkers, or "liquid biopsy", using circulating tumor cells and cell-free nucleic acids from cancer patients. Noninvasive and reproducible, liquid biopsy could provide the basis for individualized therapeutic strategies by identifying genetic and epigenetic aberrations that are closely associated with cancer initiation and progression. MicroRNAs (miRNAs) are short noncoding RNAs that post-transcriptionally regulate gene expression. They also play important roles in various physiological and developmental processes as oncogenic or tumor-suppressive regulators. Specific miRNA expression signatures have been identified in a number of human cancers. Circulating miRNAs have been detected in plasma and serum, and this in blood has attracted the attention of researchers for their potential as noninvasive biomarkers. Circulating miRNAs have emerged as tumor-associated biomarkers that reflect not only the existence of cancer, but also the dynamics, malignant potential, and drug resistance of tumors. Herein, we review the recent biological and clinical research on the circulating miRNAs of gastric cancer and discuss future perspectives for their clinical applications as a liquid biopsy.
CITATION STYLE
Komatsu, S., Kiuchi, J., Imamura, T., Ichikawa, D., & Otsuji, E. (2018). Circulating microRNAs as a liquid biopsy: a next-generation clinical biomarker for diagnosis of gastric cancer. Journal of Cancer Metastasis and Treatment, 4(7), 36. https://doi.org/10.20517/2394-4722.2017.58
Mendeley helps you to discover research relevant for your work.