Space and time characteristics of transmitter release at the nerve‐electroplaque junction of Torpedo.

32Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

1. A loose patch electrode was used to stimulate axon terminals and to record evoked electroplaque currents (EPCs) in a limited area of innervated membrane of the electric organ of Torpedo marmorata. Electrophysiological signals were compared to the predictions of a semi‐quantitative model of synaptic transmission which was designed to simulate the release of several packets of neurotransmitter molecules, at the same or at different sites of the synapse, synchronously or with various temporal patterns. 2. The amplitude distribution of EPCs evoked by activation of nerve terminals showed quantal steps. The time to peak of EPCs was in most cases independent of amplitude, but in their decaying phase a positive correlation was seen between half‐decay time and amplitude. Comparison with the model suggested that (i) a dynamic interaction occurred at the end of the EPC between the fields of postsynaptic membrane activated by individual quanta, and (ii) the sites of quantal release in the electric organ are separated from each other by 600‐1000 nm. 3. Spontaneous miniature electroplaque potentials (MEPPs) were recorded externally with the same type of loose patch electrode. The majority (75%) of external MEPPs displayed a homogeneous and rapid time course. This fast MEPP population had a mean time to peak of 0.43 ms, a half‐decay time of 0.45 ms and a time constant of decay of 0.35 ms. 4. Despite homogeneous characteristics of time course, fast MEPPs exhibited a wide amplitude distribution with a main population which could be fitted by a Gaussian curve around 1 mV, and another population of small amplitude. Both the time‐to‐peak and the half‐decay time of fast MEPPs showed a positive correlation with the amplitude from the smallest to the largest events. Acetylcholinesterase was not blocked. 5. In addition to the fast MEPPs, spontaneous signals exhibiting a slow rate of rise, or a slow rate of decay, or both were observed. They occurred at any time during the experiment, independently of the overall frequency. Approximately 15% of the total number of events had a slow rise but their decay phase was nevertheless rapid and could be ascribed to the kinetics of receptors. These slow‐rising MEPPs exhibited a variety of conformations: slow but smooth rise, sudden change of slope and sometimes several bumps or inflexions. Their average amplitude was significantly smaller than that of the main population of fast MEPPs. 6. Composite MEPPs with multiple peaks as well as bursts of small MEPPs were often encountered, even during periods of low frequency.(ABSTRACT TRUNCATED AT 400 WORDS) © 1993 The Physiological Society

Cite

CITATION STYLE

APA

Girod, R., Corrèges, P., Jacquet, J., & Dunant, Y. (1993). Space and time characteristics of transmitter release at the nerve‐electroplaque junction of Torpedo. The Journal of Physiology, 471(1), 129–157. https://doi.org/10.1113/jphysiol.1993.sp019894

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free