A near-infrared AIE fluorescent probe for myelin imaging: From sciatic nerve to the optically cleared brain tissue in 3D

35Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Myelin, the structure that surrounds and insulates neuronal axons, is an important component of the central nervous system. The visualization of the myelinated fibers in brain tissues can largely facilitate the diagnosis of myelin-related diseases and understand how the brain functions. However, the most widely used fluorescent probes for myelin visualization, such as Vybrant DiD and FluoroMyelin, have strong background staining, low-staining contrast, and low brightness. These drawbacks may originate from their self-quenching properties and greatly limit their applications in three-dimensional (3D) imaging and myelin tracing. Chemical probes for the fluorescence imaging of myelin in 3D, especially in optically cleared tissue, are highly desirable but rarely reported. We herein developed a near-infrared aggregation-induced emission (AIE)-active probe, PM-ML, for high-performance myelin imaging. PM-ML is plasma membrane targeting with good photostability. It could specifically label myelinated fibers in teased sciatic nerves and mouse brain tissues with a high-signalto- background ratio. PM-ML could be used for 3D visualization of myelin sheaths, myelinated fibers, and fascicles with highpenetration depth. The staining is compatible with different brain tissue-clearing methods, such as ClearT and ClearT2. The utility of PM-ML staining in demyelinating disease studies was demonstrated using the mouse model of multiple sclerosis. Together, this work provides an important tool for high-quality myelin visualization across scales, which may greatly contribute to the study of myelin-related diseases.

Cite

CITATION STYLE

APA

Wu, M. Y., Wong, A. Y. H., Leung, J. K., Kam, C., Lap-Kei Wu, K., Chan, Y. S., … Chen, S. (2021). A near-infrared AIE fluorescent probe for myelin imaging: From sciatic nerve to the optically cleared brain tissue in 3D. Proceedings of the National Academy of Sciences of the United States of America, 118(45). https://doi.org/10.1073/pnas.2106143118

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free