Macroscopic Chop Mark Identification on Archaeological Bone: An Experimental Study of Chipped Stone, Ground Stone, Copper, and Bronze Axe Heads on Bone

11Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

This paper presents a new macroscopic method for identifying chop marks on archaeological faunal assemblages and highlights the major differences in the morphology of chop marks created by stone and metal axes. The method provides macroscopic criteria that aid in the identification of both complete and incomplete chop mark types as well as the raw material of the axe. Experiments with modern stone (chipped and ground) and metal (copper and bronze) axes found that the degree of fragmentation within a chop mark is related to both the width and sharpness of the axe and can be classed on a scale from 1–5 using a variety of criteria. The experiments demonstrate that sharp chipped stone axes are fragile (often break upon impact) and do not create clean and well-defined chop marks. Ground stone axes are more durable but tend to create very fragmented chop marks without a clean cut (sheared) surface. Unalloyed copper metal axes can create sheared chopped surfaces; however, the relatively soft metal creates more crushing at the point of entry than bronze axes. In contrast, bronze axes are durable and create chop marks with exceptionally low rates of fragmentation resulting in a clean-cut sheared surface that extends into the bone for more than 3 mm. The method is applied to the faunal assemblage from the Early Bronze Age site of Göltepe, Turkey to determine whether the chop marks on bones were made by stone or metal axes at this early metal processing settlement. The results suggest that many of the chop marks were made by metal implements (e.g., axes). Hence, this method provides another means to monitor the adoption rates of new raw materials at a time when both metal and stone axes coexisted.

References Powered by Scopus

Surface modification on bone: Trampling versus butchery

421Citations
N/AReaders
Get full text

Experimental patterns of hammerstone percussion damage on bones: Implications for inferences of carcass processing by humans

256Citations
N/AReaders
Get full text

Applications of Scanning Electron Microscopy to Taphonomic Problems

240Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Unraveling Neolithic sharp-blunt cranial trauma: Experimental approach through synthetic analogues

9Citations
N/AReaders
Get full text

An experimental investigation of cutmark analysis of sharp force trauma in the Bronze Age

6Citations
N/AReaders
Get full text

Death in the high mountains: Evidence of interpersonal violence during Late Chalcolithic and Early Bronze Age at Roc de les Orenetes (Eastern Pyrenees, Spain)

5Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Okaluk, T. R., & Greenfield, H. J. (2022). Macroscopic Chop Mark Identification on Archaeological Bone: An Experimental Study of Chipped Stone, Ground Stone, Copper, and Bronze Axe Heads on Bone. Quaternary, 5(1). https://doi.org/10.3390/quat5010015

Readers over time

‘22‘23‘24‘2502468

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 6

75%

Professor / Associate Prof. 1

13%

Researcher 1

13%

Readers' Discipline

Tooltip

Arts and Humanities 7

64%

Medicine and Dentistry 2

18%

Biochemistry, Genetics and Molecular Bi... 1

9%

Social Sciences 1

9%

Save time finding and organizing research with Mendeley

Sign up for free
0