Renewable energy systems design using average year weather data is a standard approach that works well for grid-tied systems, but for stand-alone ones, it leads to dramatic mistakes. We considered the effect of meteorological data temporal resolution (5, 10, 15, 20, 30 min; 1, 2, 3, 4 h) on a stand-alone hybrid system’s layout in terms of equipment cost, power supply reliability and maximum duration of interruption for monitoring equipment in the Alps. We have shown that lifecycle costs could be strongly (order of magnitude) underestimated for off-grid systems, as well as their reliability overestimated. Lower temporal resolution data lead to the underestimation of energy storage charge–discharge cycles (considering depth of discharge too)—real batteries are to be replaced more often, which matches our practical experience as well. Even a 5 to 10 min decrease in weather data temporal resolution leads to the estimated annual expenses being halved. In general, we recommend using 30 min resolution.
CITATION STYLE
Klokov, A. V., & Loktionov, E. Y. (2023). Temporal Resolution of Input Weather Data Strongly Affects an Off-Grid PV System Layout and Reliability. Solar, 3(1), 49–61. https://doi.org/10.3390/solar3010004
Mendeley helps you to discover research relevant for your work.