ZIKV induction of tristetraprolin in endothelial and Sertoli cells post-transcriptionally inhibits IFNβ/λ expression and promotes ZIKV persistence

1Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Zika virus (ZIKV) is a mosquito-borne Flavivirus that persistently infects patients; enters protected brain, placental, and testicular compartments; is sexually transmitted; and causes fetal microcephaly in utero. ZIKV persistently infects human brain microvascular endothelial cells (hBMECs) that form the blood-brain barrier and Sertoli cells that form testicular barriers, establishing reservoirs that enable viral dissemination. ZIKV persistence requires inhibiting interferon (IFN) responses that direct viral clearance. We found that ZIKV induces IFNβ and IFNλ in hBMECs but post-transcriptionally inhibits IFNβ/IFNλ expression. IFNβ/IFNλ mRNAs contain AU-rich elements (AREs) in their 3′ untranslated regions which regulate protein expression through interactions with ARE-binding proteins (ARE-BPs). We found that ZIKV infection of primary hBMECs induces the expression of the ARE-BP tristetraprolin (TTP) and that TTP is a novel regulator of endothelial IFN secretion. In hBMECs, TTP knockout (KO) increased IFNβ/IFNλ mRNA abundance and IFNβ/IFNλ secretion in response to ZIKV infection and inhibited viral persistence. In contrast, TTP expression dramatically reduced IFNβ/IFNλ secretion in hBMECs. IFNβ/IFNλ mRNA stability was not significantly altered by TTP and is consistent with TTP inhibition of IFNβ/IFNλ translation. TTP is similarly induced by ZIKV infection of Sertoli cells, and like hBMECs, TTP expression or KO inhibited or enhanced IFNβ/IFNλ mRNA levels, respectively. These findings reveal a mechanism for ZIKV-induced TTP to promote viral persistence in hBMECs and Sertoli cells by post-transcriptionally regulating IFNβ/IFNλ secretion. Our results demonstrate a novel role for virally induced TTP in regulating IFN secretion in barrier cells that normally restrict viral persistence and spread to protected compartments.

Cite

CITATION STYLE

APA

Schutt, W. R., Conde, J. N., Mladinich, M. C., Himmler, G. E., & Mackow, E. R. (2023). ZIKV induction of tristetraprolin in endothelial and Sertoli cells post-transcriptionally inhibits IFNβ/λ expression and promotes ZIKV persistence. MBio, 14(5). https://doi.org/10.1128/mbio.01742-23

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free