An Efficient, Scalable and Robust P2P overlay for autonomic communication

1Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The term Autonomic Communication (AC) refers to self-managing systems which are capable of supporting self-configuration, self-healing and self-optimization. However, information reflection and collection, lack of centralized control, non-cooperation and so on are just some of the challenges within AC systems. Since many self-*properties (e.g. selfconfiguration, self-optimization, self-healing, and self-protecting) are achieved by a group of autonomous entities that coordinate in a peer-to-peer (P2P) fashion, it has opened the door to migrating research techniques from P2P systems. P2P's meaning can be better understood with a set of key characteristics similar to AC: Decentralized organization, Self-organizing nature (i.e. adaptability), Resource sharing and aggregation, and Fault-tolerance. However, not all P2P systems are compatible with AC. Unstructured systems are designed more specifically than structured systems for the heterogeneous Internet environment, where the nodes' persistence and availability are not guaranteed. Motivated by the challenges in AC and based on comprehensive analysis of popular P2P applications, three correlative standards for evaluating the compatibility of a P2P system with AC are presented in this chapter. According to these standards, a novel Efficient, Scalable and Robust (ESR) P2P overlay is proposed. Differing from current structured and unstructured, or meshed and tree-like P2P overlay, the ESR is a whole new three dimensional structure to improve the efficiency of routing, while information exchanges take in immediate neighbors with local information to make the system scalable and fault-tolerant. Furthermore, rather than a complex game theory or incentive mechanism, asimple but effective punish mechanism has been presented based on a new ID structure which can guarantee the continuity of each node's record in order to discourage negative behavior on an autonomous environment as AC. A detailed measurement study of three popular unstructured P2P overlays and ESR is performed. Our method is to analyze performances of classical searching algorithms in various overlays. Key factors in content locations including scalability, query success rate, query messages, cost, disturbed times and fault tolerance are considered carefully. The simulation results show some characteristics in unstructured P2P overlay and prove that ESR is a highly efficient, low cost and fault tolerant overlay and a good structure for applications in AC. © 2009 Springer Science+Business Media, LLC.

Cite

CITATION STYLE

APA

Li, D., Liu, H., & Vasilakos, A. (2009). An Efficient, Scalable and Robust P2P overlay for autonomic communication. In Autonomic Communication (pp. 327–350). Springer US. https://doi.org/10.1007/978-0-387-09753-4_13

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free