Spatial metabolomics for symbiotic marine invertebrates

5Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

Abstract

Microbial symbionts frequently localize within specific body structures or cell types of their multicellular hosts. This spatiotemporal niche is critical to host health, nutrient exchange, and fitness. Measuring host-microbe metabolite exchange has conventionally relied on tissue homogenates, eliminating dimensionality and dampening analytical sensitivity. We have developed a mass spectrometry imaging workflow for a softand hard-bodied cnidarian animal capable of revealing the host and symbiont metabolome in situ, without the need for a priori isotopic labelling or skeleton decalcification. The mass spectrometry imaging method provides critical functional insights that cannot be gleaned from bulk tissue analyses or other presently available spatial methods. We show that cnidarian hosts may regulate microalgal symbiont acquisition and rejection through specific ceramides distributed throughout the tissue lining the gastrovascular cavity. The distribution pattern of betaine lipids showed that once resident, symbionts primarily reside in light-exposed tentacles to generate photosynthate. Spatial patterns of these metabolites also revealed that symbiont identity can drive host metabolism.

Cite

CITATION STYLE

APA

Chan, W. Y., Rudd, D., & van Oppen, M. J. H. (2023). Spatial metabolomics for symbiotic marine invertebrates. Life Science Alliance, 6(8). https://doi.org/10.26508/lsa.202301900

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free