Background: The catastrophic and rare nature of an internal carotid artery (ICA) injury during endonasal surgery limits training opportunities. Cadaveric and animal simulation models have been proposed, but expense and complicated logistics have limited their adoption. Three-dimensional (3D) printed models are portable, modular, reusable, less costly, and proven to improve psychomotor skills required for managing different lesions. In this study we evaluate the role of a simplified laser-sintered model combined with standardized training in improving the effectiveness of managing an ICA injury endoscopically. Methods: A 3-mm defect was created in the parasellar carotid canal of a laser-sintered model representing a sphenoid sinus. Artificial blood was directed to simulate the copious bleeding arising from an ICA injury. Twenty otolaryngologists and 26 neurosurgeons, with varying training and experience levels, were individually asked to stop the “bleeding" as they would in a clinical scenario, and provided no other instructions. This was followed by individualized formative training and a second simulation. Volume of blood loss, time to hemostasis, and self-assessed confidence scores were compared. Results: At the end of the study, time to hemostasis was reduced from 105.49 seconds to 40.41 seconds (p < 0.001). The volume of blood loss was reduced from 690 to 272 mL (p < 0.001), and the confidence scores increased in 95.7% of participants, from an average of 3 up to 8. Conclusion: This ICA injury model, along with a formal training algorithm, appears to be valuable, realistic, portable, and cost-effective. Significant improvement in all parameters suggests the acquisition of psychomotor skills required to control an ICA injury.
CITATION STYLE
Maza, G., VanKoevering, K. K., Yanez-Siller, J. C., Baglam, T., Otto, B. A., Prevedello, D. M., & Carrau, R. L. (2019). Surgical simulation of a catastrophic internal carotid artery injury: a laser-sintered model. International Forum of Allergy and Rhinology, 9(1), 53–59. https://doi.org/10.1002/alr.22178
Mendeley helps you to discover research relevant for your work.