AP-1 and Cbfa/Runt Physically Interact and Regulate Parathyroid Hormone-dependent MMP13 Expression in Osteoblasts through a New Osteoblast-specific Element 2/AP-1 Composite Element

175Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The expression of MMP13 (collagenase-3), a member of the matrix metalloproteinase family, is increased in vivo as well as in cultured osteosarcoma cell lines by parathyroid hormone (PTH), a major regulator of calcium homeostasis. Binding sites for AP-1 and Cbfa/Runt transcription factors in close proximity have been identified as cis-acting elements in the murine and rat mmp13 promoter required for PTH-induced expression. The cooperative function of these factors in response to PTH in osteoblastic cells suggests a direct interaction between AP-1 and Cbfa/Runt transcription factors. Here, we demonstrate interaction between c-Jun and c-Fos with Cbfa/ Runt proteins. This interaction depends on the leucine zipper of c-Jun or c-Fos and the Runt domain of Cbfa/ Runt proteins, respectively. Moreover, c-Fos interacts with the C-terminal part of Cbfal and Cbfa2, sharing a conserved transcriptional repression domain. In addition to the distal osteoblast-specific element 2 (OSE2) element in the murine and rat mmp13 promoter, we identified a new proximal OSE2 site overlapping with the TRE motif. Both interaction of Cbfa/ Runt proteins with AP-1 and the presence of a functional proximal OSE2 site are required for enhanced transcriptional activity of the mmp13 promoter in transient transfected fibroblasts and in PTH-treated osteosarcoma cells.

Cite

CITATION STYLE

APA

Hess, J., Porte, D., Munz, C., & Angel, P. (2001). AP-1 and Cbfa/Runt Physically Interact and Regulate Parathyroid Hormone-dependent MMP13 Expression in Osteoblasts through a New Osteoblast-specific Element 2/AP-1 Composite Element. Journal of Biological Chemistry, 276(23), 20029–20038. https://doi.org/10.1074/jbc.M010601200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free